
1

Annex D: Description of Imports

Sortal Imports

This section describes the functions of sortal imports. These are mostly seen in the files ‘sortTypes.py’,

‘parse_disjunctive_sort.py’, ‘convertA’, and ‘convertS’.

Import Description

attributeSort

An Attribute Sort specifies a composition of a simple {Sort}

(its base sort) with any other {Sort} (its weight/label sort) under the object-

attribute relationship. An individual of the attribute sort is an individual of

the base sort that has a form of the weight sort or label sort assigned as an

attribute.

For more information, refer to Annex C: Relevant Terminology.

disjunctiveSort

The DisjunctiveSort class represents a disjunctive sort additionally

as an ordered set of component sorts. In its canonical version, component

sorts cannot themselves be disjunctive sorts.

For more information, refer to Annex C: Relevant Terminology.

label

A label is an alphanumerical data entity with a discrete behavior, i.e., the

value of the sum of two labels is the collection of both labels, unless both

labels are identical, in which case is either label.

The Label class extends on the Individual class. It defines the characteristic

individual for labels. A label is represented as a string. This characteristic

individual accepts no parameters. It specifies an {sortal.map. ExactMap} as

default.

Forms of labels adhere to a discrete behavior.

line2D, line3D
A line is a linear, connected, non-bounded planar curve with a discrete

behavior.

2

Import Description

The Line class extends on the Individual class. It defines the characteristic

individual for lines. A line is represented as a direction vector and a position

vector specifying the root of the line. This characteristic individual accepts no

parameters.

It specifies a {sortal.map. similarityMap} as default. Forms of lines adhere to

a discrete behavior.

lineSegment2D,

lineSegment3D

A line-segment is a connected and bounded segment of a line with an

interval behavior. The line defines the co-descriptor of the line-segment, the

boundary of the segment is defined by the start and end positions of the

line-segment. Vectors or points may be used to define the start and end

positions.

The LineSegment class extends on the Line class and implements the Interval

interface. It defines the characteristic individual for line-segments.

A line-segment is represented as a line with two rational scalars specifying

the tail and head relative to the line's root. This characteristic individual

accepts no parameters. It specifies a {sortal.map. similarityMap} as default.

Forms of line-segments adhere to an interval behavior.

point2D, point3D

A point is a 0-dimensional geometric data entity with a discrete behavior.

The Point class extends on the Individual class. It defines the characteristic

individual for points. A point is represented as a position vector.

This characteristic individual accepts no parameters. It specifies a

{sortal.map. similarityMap} as default. Forms of points adhere to a discrete

behavior.

primitiveSort

Specifies a single data type. An individual of a primitive sort has a data value

of the specified type.

For more information, refer to Annex C: Relevant Terminology.

rule Rule class that takes as input the rule description, LHS and RHS sides of rule.

3

Import Description

similarityMap

Mapping function used to distinguish that two individuals of the same sort

type (e.g. two line segments ls1 and ls2, or two points p1 and p2) are of the

same sort type despite being in different locations or having different

coordinates, and that they can be mapped together.

vector2D, vector3D

A vector specifies a position in a two-dimensional Cartesian space.

If normalized, it only specifies a direction. The Vector class defines a vector

as a pair of {coordinate}'s and a w factor to reflect the vector's infinity

characteristic

A Vector object is never modified after creation; thus, it can be used multiple

times.

Weight, rWeight

A weight specifies a value for the shade of black to white of a plane or a line

segment, or perhaps the width of a line. Weight can be defined from a range

of 0 to the maximum value. A special version of weight, called rWeight,

performs addition and subtraction of weights arithmetically.

4

Rhino-specific Imports

This section describes the functions of Rhino-specific imports.

Import Description

addColor

This method adds color to an object or several objects. It prompts for the

selection of the objects and the RGB value of the color to change the objects

to. Note that color is not visible, however, in Print Preview (commonly used

when viewing line segment widths).

addDesc

This method adds a description to the User Text dictionary of a Rhino object

under the key ‘Desc’. If applied onto a point or a line segment that already

has a description, it changes the text of the description.

addEnum

This method adds an enumerative value to the User Text dictionary of a

Rhino object under the key ‘Enum’. If applied onto a point or a line segment

that already has an enumerative value, it changes the contents.

addLabel

This method adds a label (visualized as text dot) to either a point or a line

segment. If applied onto a pre-existing text dot or a line segment that

already has a label, it changes the text of the label.

addWeight

This method adds weight to a point, text dot or line segment, or several

objects at once. With points and text dots this is shown as grayscale color (0

– black to 255 – white), and with line segments this is shown as line width.

Line width is only visible when Rhino is set to Print Preview.

attachLabel

This method attaches a pre-existing text dot as a label to a pre-existing line.

It changes the User Text dictionary value that corresponds to the key ‘Label’

to the text of the text dot, stores the GUID of the selected text dot in the

User Text dictionary of the line under the key ‘LabelDot’, and moves the text

dot to the midpoint of the line it is attached to.

clearFrame
This method prompts for the selection of a frame and clears all Rhino objects
inside that frame.

5

clearShape
This method takes as input a list of GUIDs or a list of lists of GUIDs, and
deletes them from the Rhino workspace.

convertA
The method ‘convertA.toSortal’ takes as input an agnostic tuple and returns
a sortal metaform.

convertR

The method ‘convertR.toAgnostic’ takes as input a list of Rhino GUIDs, the
reference point for the frame the shape is inside of, and returns an agnostic
tuple.

convertS
The method ‘convertS.toAgnostic’ takes as input a sortal metaform and
returns an agnostic tuple.

create_rule

This method takes as input the rule name, rule description, and prompts for
the selection of the frames where the LHS and RHS shapes are contained in.
If the rule name given already matches that of a pre-existing rule, then there
is the option to either overwrite the pre-existing rule or rename the rule
currently being created. It returns the rule instance and the rule name.

delete
This method clears the sort and rule register of any previous data, deletes all
Rhino objects present in the window, and sets up empty frames and layers.

delLabel

This method removes the label of a line segment by setting the value for the
key ‘Label’ in the User Text dictionary of the selected line to empty, meaning
that in future handling the line will not have a label attribute. It also deletes
the text dot associated with the line, i.e. the text dot that corresponds to the
GUID stored in the User Text dictionary of the line under the key ‘LabelDot’.

extract

This class of methods uses the function ‘extract.getIndividuals’ to prompt for
a frame where the shape to be extracted is housed in. The method returns
the list of Rhino GUIDs corresponding to the objects inside the frame, the
layer name the objects are drawn on, and the reference point or insertion
point of the frame block instance selected.

find_rule_appns

This method takes as input a subshape and shape (agnostic form), and a rule.
It checks if the subshape is part of the larger shape before generating
matches and applications for both shapes. The method then checks which
applications of the larger shape match those of the subshape, convert the
LHS-RHS-rule application combinations from sortal to agnostic, and combine
all these into a list that is returned.

6

visualA

This set of methods can be found in ‘visualAgnostic.py’ and is a class that
takes as input the agnostic form to be visualized, the layer the form is to be
drawn on, and the reference point for the figure. It has a method called
‘plotAgnostic’ that draws the figure and returns the list of Rhino GUIDs
corresponding to the shape just drawn. An instance of ‘visualA’ stores the
object GUIDs of the Rhino objects generated by its ‘plotAgnostic’ method.

